JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Gas exchange, water relations and osmotic adjustment in Phillyrea latifolia grown at various salinity concentrations.

Tree Physiology 2002 April
Leaf gas exchange, water relations and osmotic adjustment were studied in hydroponically grown Phillyrea latifolia L. plants exposed to 5 weeks of salinity stress (0, 80, 160, 240 and 320 mM NaCl) followed by 5 weeks of treatment with half-strength Hoagland solution. Whole-plant relative growth rate and root/shoot and lateral/structural root ratios were also evaluated. Net CO2 assimilation rate, stomatal conductance and transpiration rate were markedly decreased by all of the salt treatments. Growth was also strongly depressed by all salt treatments, especially lateral root growth. Leaf water potential decreased soon after salinity stress was imposed, whereas there was a lag of several weeks before leaf osmotic potential decreased in response to the salt treatments. After 5 weeks of salinization, leaf turgor of salt-treated plants was similar to that of controls. Although Na+ + Cl- contributed little to the salt-induced changes in osmotic potential at full turgor (Psi(piFT)), the contributions of K+, mannitol (Man) and glucose (Glc) to Psi(piFT) markedly increased as external salinity increased. Salt accumulation was negligible in the youngest leaves, which mostly accumulated soluble carbohydrates and K+; in contrast, old leaves served as storage sinks for Na+ and Cl-. Photosynthetic performance of salt-treated plants fully recovered once salt was leached from the root zone, with the recovery rate depending on the severity of the salt stress previously experienced by the plants. Recovery of gas exchange occurred even though the leaves still had a salt load similar to that detected in leaves at the end of the 5-week salinity period, and had markedly lower concentrations of K+ and soluble carbohydrates than control leaves. We conclude that salt-induced water stress primarily controlled gas exchange of salt-treated P. latifolia leaves, whereas the salt load in the leaves did not cause irreversible damage to the photosynthetic apparatus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app