Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of signal transduction pathways involved in constitutive NF-kappaB activation in breast cancer cells.

Oncogene 2002 March 28
Nuclear factor-kappaB (NF-kappaB) is usually maintained in an inactive form in the cytoplasm through its association with inhibitor of kappaB (IkappaB) proteins, and is activated upon stimulation of cells with a variety of signals. However, constitutive activation of NF-kappaB is observed in a number of cancers including breast cancer. The signaling pathways that are involved in constitutive NF-kappaB activation remain largely unknown. Using breast cancer cell lines derived from transgenic mice that overexpress specific oncogene/growth factors in the mammary gland, we show that heregulin but not her2/neu, c-Myc or v-Ha-ras plays a major role in constitutive NF-kappaB activation. Her2/neu potentiated tumor necrosis factor alpha (TNFalpha)-inducible NF-kappaB activation whereas c-Myc potentiated 12-o-tetracecanyolphorbol-13-acetate (TPA)-induced NF-kappaB activation. Heregulin-mediated NF-kappaB activation correlated with phosphorylation of epidermal growth factor receptor (EGFR) and ErbB3 but not her2/neu. Tryphostin AG1517, which inhibits heregulin-mediated phosphorylation of EGFR, her2/neu and ErbB3 reduced NF-kappaB activation. In contrast, emodin, which blocks phosphorylation of her2/neu by heregulin, failed to reduce NF-kappaB activation. These results suggest that heregulin induces NF-kappaB independent of her2/neu. PI3 kinase/AKT, protein kinase A (PKA) and IkappaB kinase appear to be downstream signaling molecules involved in NF-kappaB activation as specific inhibitors of these kinases but not inhibitors of ERK/MAP kinase or protein kinase C reduced heregulin-mediated NF-kappaB activation. Based on these results, we propose that heregulin increases the expression of pro-invasive, pro-metastatic and anti-apoptotic genes in cancer cells through autocrine activation of NF-kappaB, which leads to invasive and drug-resistant growth of breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app