JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Inhibition of tumorigenicity and metastasis of human bladder cancer growing in athymic mice by interferon-beta gene therapy results partially from various antiangiogenic effects including endothelial cell apoptosis.

We determined whether the IFN-beta gene could suppress angiogenesis, tumor growth, and metastasis of human bladder transitional cell carcinoma. The highly tumorigenic and metastatic 253J B-V(R) human bladder transitional cell carcinoma (TCC) cell line (resistant to the antiproliferative effects of IFN-beta) was infected in vitro with adenoviral beta-galactosidase (Ad-LacZ), murine adenoviral IFN-beta (Ad-mIFN-beta), or human adenoviral IFN-beta (Ad-hIFN-beta) and implanted into the bladders of athymic nude mice. Ad-mIFN-beta and Ad-hIFN-beta were used because of the species specificity of IFN-beta. The transient production of mIFN-beta and hIFN-beta from the infected 253JB-V(R) tumor cells significantly inhibited tumorigenicity and spontaneous lymph node metastasis. Subsequently, the 253J B-V(R) cells were implanted into the subcutis of athymic nude mice, and established tumors were treated by direct intratumoral injection with Ad-mIFN-beta, Ad-hIFN-beta, Ad-LacZ, or PBS. By in situ hybridization (ISH) and immunohistochemical analysis (IHC), expression of hIFN-beta and mIFN-beta mRNA and protein within the tumors was demonstrated after Ad-hIFN-beta and Ad-mIFN-beta gene therapy, respectively. The therapy also induced necrosis in both the Ad-mIFN-beta- and Ad-hIFN-beta-treated tumors. IHC revealed decreased tumor cell proliferation and the sequestration of activated macrophages within the tumors after Ad-mIFN-beta therapy. In addition, the expression of the proangiogenic factors bFGF, and MMP-9 protein (by IHC) was significantly down-regulated by Ad-hIFN-beta gene therapy. Double-immunofluorescent IHC for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) and CD-31 demonstrated tumor and endothelial cell apoptosis in those tumors treated with Ad-hIFN-beta gene therapy. Tumor-induced angiogenesis, as determined by the microvessel density, was decreased in tumors treated with both Ad-mIFN-beta and Ad-hIFN-beta. These data suggest that the inhibition of tumorigenicity and the metastasis of the 253J B-V(R) cells after infection with Ad-IFN-beta is caused by the inhibition of angiogenesis and the activation of host effector cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app