Add like
Add dislike
Add to saved papers

A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae.

The heat shock factor (HSF) is a pivotal transcriptional factor that regulates the expression of genes encoding heat shock proteins (HSPs) via heat shock elements (HSEs). nGAAnnTTCnnGAAn functions as the minimum consensus HSE (cHSE) in vivo. Here we show that the expression of Saccharomyces cerevisiae MDJ1 encoding a mitochondrial DnaJ homolog is regulated by HSF via a novel non-consensus HSE (ncHSE(MDJ1)), which consists of three separated pentameric nGAAn motifs, nTTCn-(11 bp)-nGAAn-(5 bp)-nGAAn. This is the first evidence to show that the immediate contact of nGAAn motifs is dispensable for regulation by HSF in vivo. ncHSE(MDJ1) confers different heat shock responses versus cHSE and, unlike cHSE, definitively requires a carboxyl-terminal activation domain of HSF in the expression. ncHSE(MDJ1)-like elements are found in promoter regions of some other DnaJ-related genes. The highly conserved HSF/HSE system suggests that similar ncHSEs may be used for the expression of HSP genes in other eukaryotes including humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app