RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Disruption of the C5a receptor gene fails to protect against experimental allergic encephalomyelitis.
European Journal of Immunology 2002 April
Activation of the complement system generates the anaphylatoxic peptide C5a, which elicits a broad range of inflammatory activities. The biological activities of C5a are mediated through its binding to the widely expressed C5a receptor (C5aR), a G-protein-coupled seven transmembrane domain receptor. In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, the C5aR is expressed on monocytes/macrophages, reactive astrocytes and T cells infiltrating the central nervous system (CNS). To investigate the role of the C5aR in this T cell-driven autoimmune model, we induced EAE in C5aR-deficient mice (C5aR(-/-)) and wild-type mice using a myelin oligodendrocyte glycoprotein (MOG) peptide as the immunogen. We found that C5aR(-/-) mice were fully susceptible to MOG-induced EAE with no difference in disease onset or severity in C5aR(-/-) mice compared to control mice. Cellular infiltrates (macrophages and T cells) were similar in the spinal cords of both animal groups and splenic T cells from C5aR(-/-) mice and control mice responded identically to MOG in T cell proliferation assays. Ribonuclease protection assays demonstrated no significant differences in pro-inflammatory gene expression between receptor-deficient and sufficient mice. These results indicate that the C5aR is not an essential mediator in the induction and progression of EAE.
Full text links
Trending Papers
Diabetic kidney disease in type 2 diabetes: a consensus statement from the Swiss Societies of Diabetes and Nephrology.Swiss Medical Weekly 2023 January 7
Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment.Frontiers in Immunology 2022
Migraine.Annals of Internal Medicine 2023 January 11
Long COVID: major findings, mechanisms and recommendations.Nature Reviews. Microbiology 2023 January 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app