In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Contractile responses in spontaneously diabetic mice. I. Involvement of superoxide anion in enhanced contractile response of aorta to norepinephrine in C57BL/KsJ(db/db) mice.

General Pharmacology 2000 December
This study investigated the influence of superoxide anion on the norepinephrine (NE)-induced contractile response in spontaneously diabetic mice. In aortic rings with intact endothelium, NE elicited only a slight increase in tension in nondiabetic mice (db/+M), but a much greater dose-dependent contraction in spontaneously diabetic mice (db/db mice). The NE-induced contractile response was significantly reduced by pretreatment with SOD (180 U/ml) in diabetic mice, but not in control mice. The NE-induced contraction was significantly enhanced by pretreatment with diethyldithiocarbamic acid (DETCA, 10(-3) M), a Cu/Zn SOD inhibitor, in control mice, but not in diabetic mice. The dose-response curve for the acetylcholine-induced relaxation was slightly, but significantly attenuated in diabetic mice. When aortic rings from control mice were incubated with a mixture of hypoxanthine (10(-5) M), xanthine oxidase (0.1 U/ml) and catalase (1000 U/ml) in control mice, they gradually contracted. This contraction was abolished by pretreatment with SOD (180 U/ml) or indomethacin (10(-5) M) or by removal of the endothelium. The enhanced NE-induced dose-dependent contraction seen in diabetic mice was markedly attenuated by indomethacin. These results suggest that in db/db diabetic mice, superoxide anion, perhaps via vasoconstrictor prostanoids, may enhance the contraction induced by NE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app