JOURNAL ARTICLE

Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4',6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study

David Reha, Martin Kabelác, Filip Ryjácek, Jirí Sponer, Judit E Sponer, Marcus Elstner, Sándor Suhai, Pavel Hobza
Journal of the American Chemical Society 2002 April 3, 124 (13): 3366-76
11916422
Properties of isolated intercalators (ethidium (E), daunomycin (D), ellipticine (EL), and 4,6'-diaminide-2-phenylindole (DAPI)) and their stacking interactions with adenine...thymine (AT) and guanine...cytosine (GC) nucleic acid base pairs were investigated by means of a nonempirical correlated ab initio method. All intercalators exhibit large charge delocalization, and none of them (including the DAPI dication) exhibits a site with dominant charge. All intercalators have large polarizability and are good electron acceptors, while base pairs are good electron donors. MP2/6-31G*(0.25) stabilization energies of intercalator...base pair complexes are large (E...AT, 22.4 kcal/mol; D...GC, 17.8 kcal/mol; EL...GC, 18.2 kcal/mol; DAPI...GC, 21.1 kcal/mol) and are well reproduced by modified AMBER potential (van der Waals radii of intercalator atoms are enlarged and their energy depths are increased). Standard AMBER potential underestimates binding, especially for DAPI-containing complexes. Because the DAPI dication is the best electron acceptor (among all intercalators studied), this difference is explained by the importance of the charge-transfer term, which is not included in the AMBER potential. For the neutral EL molecule, the standard AMBER force field provides correct results. The Hartree-Fock and DFT/B3LYP methods, not covering the dispersion energy, fail completely to reveal any energy minimum at the potential energy curve of the E...AT complex, and these methods thus cannot be recommended for a study of intercalation process. On the other hand, an approximate version of the DFT method, which was extended to cover London dispersion energy, yields for all complexes very good stabilization energies that are well comparable with referenced ab initio data. Besides the vertical dependence of the interaction, an energy twist dependence of the interaction energy was also investigated by a reference correlated ab initio method and empirical potentials. It is concluded that, despite the cationic (E +1, D +1, DAPI +2) or polar (EL) character of the intercalators investigated, it is the dispersion energy which predominantly contributes to the stability of intercalator...base pair complexes. Any procedure which does not cover dispersion energy is thus not suitable for studying the process of intercalation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
11916422
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"