Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Origin and evolution of arthropod hemocyanins and related proteins.

Arthropod hemocyanins are large, multimeric, (n x 6) copper-containing proteins that deliver oxygen in the haemolymph of many chelicerate, crustacean, myriapod, and also possibly some insect species. The arthropod hemocyanins belong to a large protein superfamily that also includes the arthropod phenoloxidases, certain crustacean and insect storage proteins (pseudo-hemocyanins and hexamerins), and the insect hexamerin receptors. Here I summarise the present knowledge of the origin, functional adaptations, and evolution of these proteins. Arthropod and mollusc hemocyanins are, if at all, only distantly related. As early as in the arthropod stem line, the hemocyanins emerged from a phenoloxidase-like enzyme. The evolution of distinct hemocyanin subunits, as well as the formation of multi-hexamers occurred independently within the arthropod subphyla. Hemocyanin subunit evolution is strikingly different in the Chelicerata, Myriapoda and Crustacea. Hemocyanins individually gave rise to two distinct copper-less storage proteins, the insect hexamerins and the crustacean pseudo-hemocyanins (cryptocyanins). The receptor responsible for the uptake of hexamerin by the larval fat body of the insects emerged from a hexamerin-precursor. Molecular phylogenetic analyses show a close relationship of the crustacean and insect proteins, providing strong support for a pancrustacean taxon, while structural data suggest a myriapod-chelicerate clade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app