JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Glucose flux is normalized by compensatory hyperinsulinaemia in growth hormone-induced insulin resistance in healthy subjects, while skeletal muscle protein synthesis remains unchanged.

The aim of this present investigation was to study the relationship between the reduction in insulin sensitivity accompanying 5 days of treatment with growth hormone (GH; 0.05 mg.24 h(-1).kg(-1)) and intracellular substrate oxidation rates in six healthy subjects, while maintaining glucose flux by a constant glucose infusion and adjusting insulin infusion rates to achieve normoglycaemia (feedback clamp). Protein synthesis rates in skeletal muscle (flooding dose of L-[(2)H(5)]phenylalanine) were determined under these conditions. We also compared changes in insulin sensitivity after GH treatment with simultaneous changes in energy requirements, protein synthesis rates, nitrogen balance, 3-methylhistidine excretion in urine, body composition and the hormonal milieu. After GH treatment, 70% more insulin was required to maintain normoglycaemia (P<0.01). The ratio between glucose infusion rate and serum insulin levels decreased by 34% at the two levels of glucose infusion tested (P<0.05). Basal levels of C-peptide, insulin-like growth factor (IGF)-I and IGF-binding protein-3 increased almost 2-fold, while levels of glucose, insulin, glucagon, GH and IGF-binding protein-1 remained unchanged. Non-esterified fatty acid levels decreased (P<0.05). In addition, 24 h urinary nitrogen excretion decreased by 26% (P<0.01) after GH treatment, while skeletal muscle protein synthesis and 3-methylhistidine excretion in urine remained unchanged. Energy expenditure increased by 5% (P<0.05) after treatment, whereas fat and carbohydrate oxidation were unaltered. In conclusion, when glucose flux was normalized by compensatory hyperinsulinaemia under conditions of GH-induced insulin resistance, intracellular rates of oxidation of glucose and fat remained unchanged. The nitrogen retention accompanying GH treatment seems to be due largely to improved nitrogen balance in non-muscle tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app