In Vitro
Journal Article
Add like
Add dislike
Add to saved papers

Renal Na-K-Cl cotransporter NKCC2 in Dahl salt-sensitive rats.

BACKGROUND: Dahl salt-sensitive (DS) rats are characterized by enhanced NaCl reabsorption in the loop of Henle, but the responsible ion transport protein is unknown.

OBJECTIVE: To investigate renal Na-K-Cl cotransporter NKCC2 function and expression in DS rats under a low-salt diet.

METHODS: NKCC2 functioning was assessed in vitro by measuring bumetanide-sensitive rubidium uptake and cytosolic chloride concentration in isolated medullary thick ascending limb (mTAL) tubules, and in vivo by measuring the salidiuretic action of orally given bumetanide. NKCC2 expression was assessed by Western blot analysis of outer medullary proteins using T4 monoclonal antibody.

RESULTS: mTAL tubules from DS rats exhibited significantly higher bumetanide-sensitive rubidium uptake (85.1 +/- 4.8 versus 66.2 +/- 4.4 nmol/min per mg protein in DS and DR, (Dahl salt-resistant) rats, respectively; P = 0.011) and significantly higher cytosolic chloride (32.8 +/- 1.7 versus 25.0 +/- 1.5 mmol/l in DS and DR rats, respectively). Moreover, DS rats showed a significantly higher (P < 0.001) natriuretic response to bumetanide (1.13 +/- 0.05 versus 0.64 +/- 0.09 mmole/3 h in DS and DR rats, respectively). Finally, Western blot analysis revealed less NKCC2 expression in DS rats.

CONCLUSIONS: We conclude that DS rats have increased renal NKCC2 activity, thus explaining, at least in part, their genetic renal inability to excrete sodium. Moreover, DS rats have a decreased renal NKCC2 expression, which can be a compensatory phenomenon against NKCC2 hyperactivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app