JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of early environment on field CA3a pyramidal neuron morphology in the guinea-pig.

There is evidence that early environmental conditions have profound effects on the morphology of the dentate granule cells. The aim of the present study was to obtain information about the effects of early environment on neuron morphology in the hippocampal field CA3, a structure closely linked to the dentate gyrus. The dendritic trees and the somata of field CA3a pyramidal neurons were quantified in Golgi-stained brains of guinea-pigs of both sexes raised in either a social or an isolated environment. Two pyramidal neuron types were found in CA3a, characterized by either a long or a short shaft. Environment affected the apical tree of the long-shaft neurons only in males and that of the short-shaft neurons in both sexes. In isolated males the long-shaft neurons had a decrease in the number of dendritic intersections (62-82%), branching points (76%) and length (71%) in the middle third of the apical tree. The short-shaft neurons had a decrease in the number of intersections at two distal levels only in both isolated males (26, 83%) and females (77, 82%). The shaft spine density was affected by environment in the long-shaft neurons of males only, with a density increase (110%) in isolated males. In both sexes the basal tree of only the long-shaft neurons was affected by environment. Isolated males had a decrease in the number of dendritic intersections (65-88%), primary dendrites (80%) and dendritic length (88%) and isolated females had a decrease in the number of intersections (51-89%), branching points (77%) and dendritic length (85%). The soma major axis of only the long-shaft neurons was affected by environment with a reduction in isolated males (90%) but an increase in isolated females (111%). These results demonstrate dendritic atrophy of CA3a pyramidal neurons following early isolation and a different reactivity to environment of the two CA3a pyramidal neuron types, their apical and basal trees and the two sexes. The dendritic atrophy of CA3a neurons caused by isolation is likely to be associated with an impairment in the physiology of the hippocampal formation and in the forms of memory in which the hippocampal formation plays a major role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app