JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rational design of alpha-helical antifreeze peptides.

The alanine-rich alpha-helical antifreeze protein from the winter flounder Pseudopleuronectes americanus adsorbs to specific planes of ice guided by an ice lattice match to threonine residues regularly spaced 16.6 A apart. We report here that by redesigning the winter flounder antifreeze peptide to incorporate a 27.1-A spacing between putative 'ice-binding' threonines, the deduced binding alignment of the helical molecule on the ice lattice is changed from the Miller indices directional vector [1102 ] to [2203 ]. Subsequent ice-binding characteristics are altered, including changes in adsorption specificity, decreases in thermal hysteresis activity and the formation of rotated hexagonal bipyramid ice crystal morphology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app