Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Planar three-coordinate high-spin Fe(II) complexes with large orbital angular momentum: Mössbauer, electron paramagnetic resonance, and electronic structure studies.

Mössbauer spectra of [LFe(II)X](0) (L = beta-diketiminate; X = Cl(-), CH(3)(-), NHTol(-), NHtBu(-)), 1.X, were recorded between 4.2 and 200 K in applied magnetic fields up to 8.0 T. A spin Hamiltonian analysis of these data revealed a spin S = 2 system with uniaxial magnetization properties, arising from a quasi-degenerate M(S) = +/-2 doublet that is separated from the next magnetic sublevels by very large zero-field splittings (3/D/ > 150 cm(-1)). The ground levels give rise to positive magnetic hyperfine fields of unprecedented magnitudes, B(int) = +82, +78, +72, and +62 T for 1.CH(3), 1.NHTol, 1.NHtBu, and 1.Cl, respectively. Parallel-mode EPR measurements at X-band gave effective g values that are considerably larger than the spin-only value 8, namely g(eff) = 10.9 (1.Cl) and 11.4 (1.CH(3)), suggesting the presence of unquenched orbital angular momenta. A qualitative crystal field analysis of g(eff) shows that these momenta originate from spin-orbit coupling between energetically closely spaced yz and z(2) 3d-orbital states at iron and that the spin of the M(S) = +/-2 doublet is quantized along x, where x is along the Fe-X vector and z is normal to the molecular plane. A quantitative analysis of g(eff) provides the magnitude of the crystal field splitting of the lowest two orbitals, /epsilon(yz) - epsilon(2)(z)/ = 452 (1.Cl) and 135 cm(-1) (1.CH(3)). A determination of the sign of the crystal field splitting was attempted by analyzing the electric field gradient (EFG) at the (57)Fe nuclei, taking into account explicitly the influence of spin-orbit coupling on the valence term and ligand contributions. This analysis, however, led to ambiguous results for the sign of epsilon(yz) - epsilon(2)(z). The ambiguity was resolved by analyzing the splitting Delta of the M(S) = +/-2 doublet; Delta = 0.3 cm(-1) for 1.Cl and Delta = 0.03 cm(-)(1) for 1.CH(3). This approach showed that z(2) is the ground state in both complexes and that epsilon(yz) - epsilon(2)(z) approximately 3500 cm(-1) for 1.Cl and 6000 cm(-1) for 1.CH(3). The crystal field states and energies were compared with the results obtained from time-dependent density functional theory (TD-DFT). The isomer shifts and electric field gradients in 1.X exhibit a remarkably strong dependence on ligand X. The ligand contributions to the EFG, denoted W, were expressed by assigning ligand-specific parameters: W(X) to ligands X and W(N) to the diketiminate nitrogens. The additivity and transferability hypotheses underlying this model were confirmed by DFT calculations. The analysis of the EFG data for 1.X yields the ordering W(N(diketiminate)) < W(Cl) < W(N'HR), W(CH(3)) and indicates that the diketiminate nitrogens perturb the iron wave function to a considerably lesser extent than the monodentate nitrogen donors do. Finally, our study of these synthetic model complexes suggests an explanation for the unusual values for the electric hyperfine parameters of the iron sites in the Fe-Mo cofactor of nitrogenase in the M(N) state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app