JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of imaging parameters on high-intensity cerebrospinal fluid artifacts in fast-FLAIR MR imaging.

BACKGROUND AND PURPOSE: High-intensity CSF artifacts at the basal cisterns on MR images are often seen when a fast fluid-attenuated inversion recovery (FLAIR) technique is used. We investigated the influences of four optional fast-FLAIR sequence parameters on the high-intensity CSF artifacts.

METHODS: A total of 377 patients (age range, 1 week to 91 years; mean 40.6 years; 186 female, 191 male) were examined with axial fast-FLAIR images obtained (TR/TE(eff)/TI, 8800/133/2200) with a 1.5-T system during 6 months. The effects of the optional addition of inferior inflow saturation (thickness, 80 mm), section flow compensation, and tailored radiofrequency (TRF) pulses, plus the choice of interleaving acquisition factors of 2 or 3, were evaluated for the presence of high-intensity CSF artifacts on the fast-FLAIR images. Two radiologists independently reviewed the fast-FLAIR images in 76 patients; afterward, a single observer reviewed the remainder of the images.

RESULTS: The interobserver agreement rate in 76 cases was more than 90%. The use of TRF and/or three interleaving acquisitions resulted in a substantial reduction in the incidence of high-intensity CSF artifacts from about 80% to 40% (P <.05, two-sample two-sided Z test). Inferior inflow saturation and section flow compensation did not significantly improve image quality (P >.05). The results were consistent with the image quality ranking obtained in five healthy volunteers.

CONCLUSION: The appropriate choice of sequence parameters in fast-FLAIR imaging reduces the incidence of high-intensity CSF artifacts that are frequently encountered in the presence of rapid CSF flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app