JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Different isoforms of fasciclin II are expressed by a subset of developing olfactory receptor neurons and by olfactory-nerve glial cells during formation of glomeruli in the moth Manduca sexta.

During development of the primary olfactory projection, olfactory receptor axons must sort by odor specificity and seek particular sites in the brain in which to create odor-specific glomeruli. In the moth Manduca sexta, we showed previously that fasciclin II, a cell adhesion molecule in the immunoglobulin superfamily, is expressed by the axons of a subset of olfactory receptor neurons during development and that, in a specialized glia-rich "sorting zone," these axons segregate from nonfasciclin II-expressing axons before entering the neuropil of the glomerular layer. The segregation into fasciclin II-positive fascicles is dependent on the presence of the glial cells in the sorting zone. Here, we explore the expression patterns for different isoforms of Manduca fasciclin II in the developing olfactory system. We find that olfactory receptor axons express transmembrane fasciclin II during the period of axonal ingrowth and glomerulus development. Fascicles of TM-fasciclin II+ axons target certain glomeruli and avoid others, such as the sexually dimorphic glomeruli. These results suggest that TM-fasciclin II may play a role in the sorting and guidance of the axons. GPI-linked forms of fasciclin II are expressed weakly by glial cells associated with the receptor axons before they reach the sorting zone, but not by sorting-zone glia. GPI-fasciclin II may, therefore, be involved in axon-glia interactions related to stabilization of axons in the nerve, but probably not related to sorting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app