Add like
Add dislike
Add to saved papers

Synthesis, structure, and magnetic properties of tetranuclear cubane-like and chain-like iron(II) complexes based on the N(4)O pentadentate dinucleating ligand 1,5-bis[(2-pyridylmethyl)amino]pentan-3-ol.

Inorganic Chemistry 2002 March 26
The tetranuclear complexes [Fe(4)(pypentO)(pym)(3)(Oac)(NCS)(3)] x 1.5EtOH (1), [Fe(4)(pypentO)(pym)(Oac)(2)(NCS)(2)(MeO)(2)(H(2)O)] x H(2)O (2), [Fe(2)(pypentO)(NCO)(3)](2) (3), and [Fe(2)(pypentO)(N(3))(3)](2) (4) have been prepared, and their structure and magnetic properties have been studied (pypentOH = 1,5-bis[(2-pyridylmethyl)amino]pentan-3-ol, pymH = 2-pyridylmethanol). The X-ray diffraction analysis of 1 (C(43)H(53)N(10)O(7.5)S(3)Fe(4), monoclinic, P2(1)/n, a = 11.6153(17) A, b = 34.391(17) A, c = 14.2150(18) A, beta = 110.88(5) degrees, V = 5305(3) A(3), Z = 4) and 2 (C(31)H(45)N(7)O(10)S(2)Fe(4), monoclinic, C2/c, a = 19.9165(17) A, b = 21.1001(12) A, c = 21.2617(19) A, beta = 104.441(10) degrees, V = 8652.7(12) A(3), Z = 8) showed a Fe(4)O(4) cubane-like arrangement of four iron(II) atoms, four mu(3)-O bridging ligands, one (1) or two (2) syn-syn bridging acetates. The X-ray diffraction analysis of 3 (C(40)H(46)N(14)O(8)Fe(4), monoclinic, P2(1)/c, a = 11.7633(18) A, b = 18.234(3) A, c = 10.4792(16) A, beta = 99.359(18) degrees, V = 2217.7(6) A(3), Z = 2) and 4 (C(34)H(46)N(26)O(2)Fe(4), monoclinic, P2(1)/c, V = 4412.4(10) A(3), a = 23.534(3) A, b = 18.046(2) A, c = 10.4865(16) A, beta = 97.80(2) degrees, Z = 4) showed a zigzag bis-dinuclear arrangement of four iron(II) cations, two mu(2)-O bridging pypentO ligands, four mu(2)-N-cyanato bridging ligands (3) or four end-on azido bridging ligands (4): they are the first examples of cyanato and azido bridged discrete polynuclear ferrous compounds, respectively. The Mössbauer spectra of 1 are consistent with four different high-spin iron(II) sites in the Fe(4)O(4) cubane-type structure. The Mössbauer spectra of 3 are consistent with two high-spin iron(II) sites (N(5)O and N(4)O). Below 190 K, the Mössbauer spectra of 4 are consistent with one N(5)O and two N(4)O high-spin iron(II) sites. The temperature dependence of the magnetic susceptibility was fitted with J(1) approximately 0 cm(-1), J(2) = -1.3 cm(-1), J(3) = 4.6 cm(-1), D = 6.4 cm(-1), and g = 2.21 for 1; J(1) = 2.6 cm(-1), J(2) = 2.5 cm(-1), J(3) = - 5.6 cm(-1), D = 4.5 cm(-1), and g = 2.09 for 2; J(1) = 1.5 cm(-1), J(2) = 0.2 cm(-1), D = - 5.6 cm(-1), D' = 4.5 cm(-1), and g = 2.14 for 3; and J(1) = - 2.6 cm(-1), J(2) = 0.8 cm(-1), D= 6.3 cm(-1), D' = 1.6 cm(-1), and g = 2.18 for 4. The differences in sign among the J(1), J(2), and J(3) super-exchange interactions indicate that the faces including only mu(3)-OR bridges exhibit ferromagnetic interactions. The nature of the ground state in 1-3 is confirmed by simulation of the magnetization curves at 2 and 5 K. In the bis-dinuclear iron(II) compounds 3 and 4, the J(2) interaction resulting from the bridging of two Fe(2)(pypentO)X(3) units through two pseudo-halide anions is ferromagnetic in 3 (X = mu(2)-N-cyanato) and may be either ferro- or antiferromagnetic in 4 (X = end-on azido). The J(1) interaction through the central O(alkoxo) and pseudo-halide bridges inside the dinuclear units is ferromagnetic in 3 (X = mu(2)-N-cyanato) and antiferromagnetic in 4 (X = end-on azido). In agreement with the symmetry of the two Fe(II) sites in complexes 3 and 4, D (pentacoordinated sites) is larger than D' (octahedral sites).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app