Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of antigen presentation on TCR modulation and cytokine release: implications for detection and sorting of antigen-specific CD8+ T cells using HLA-A2 wild-type or HLA-A2 mutant tetrameric complexes.

Journal of Immunology 2002 March 16
Soluble MHC class I molecules loaded with antigenic peptides are available either to detect and to enumerate or, alternatively, to sort and expand MHC class I-restricted and peptide-reactive T cells. A defined number of MHC class I/peptide complexes can now be implemented to measure T cell responses induced upon Ag-specific stimulation, including CD3/CD8/zeta-chain down-regulation, pattern, and quantity of cytokine secretion. As a paradigm, we analyzed the reactivity of a Melan-A/MART-1-specific and HLA-A2-restricted CD8(+) T cell clone to either soluble or solid-phase presented peptides, including the naturally processed and presented Melan-A/MART-1 peptide AAGIGILTV or the peptide analog ELAGIGILTV presented either by the HLA-A2 wild-type (wt) or mutant (alanineright arrowvaline aa 245) MHC class I molecule, which reduces engagement of the CD8 molecule with the HLA-A2 heavy chain. Soluble MHC class I complexes were used as either monomeric or tetrameric complexes. Soluble monomeric MHC class I complexes, loaded with the Melan-A/MART-1 peptide, resulted in CD3/CD8 and TCR zeta-chain down-regulation, but did not induce measurable cytokine release. In general, differences pertaining to CD3/CD8/zeta-chain regulation and cytokine release, including IL-2, IFN-gamma, and GM-CSF, were associated with 1) the format of Ag presentation (monomeric vs tetrameric MHC class I complexes), 2) wt vs mutant HLA-A2 molecules, and 3) the target Ag (wt vs analog peptide). These differences are to be considered if T cells are exposed to recombinant MHC class I Ags loaded with peptides implemented for detection, activation, or sorting of Ag-specific T cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app