Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations.

BACKGROUND: Mechanical ventilation causes changes in left ventricular preload leading to distinct variations in left ventricular stroke volume and systolic arterial pressure. Retrospective off-line quantification of systolic arterial pressure variations (SPV) has been validated as a sensitive method of predicting left ventricular response to volume administration. We report the real-time measurement of left ventricular stroke volume variations (SVV) by continuous arterial pulse contour analysis and compare it with off-line measurements of SPV in patients after cardiac surgery.

METHODS: SVV and SPV were determined before and after volume loading with colloids in 20 mechanically ventilated patients.

RESULTS: SVV and SPV decreased significantly after volume loading and were correlated (r=0.89; P<0.001). Changes in SVV and changes in SPV as a result of volume loading were also significantly correlated (r=0.85; P<0.005). Changes in SVV correlated significantly with changes in stroke volume index (SVI) (r=0.67; P<0.005) as did changes in SPV (r=0.56; P<0.05). SVV determined before volume loading correlated significantly with changes in SVI (R=0.67; P <0.005). Using receiver operating characteristics curves, the area under the curve was statistically greater for SVV (0.824; 95% confidence interval: [CI] 0.64-1.0) and SPV (0.81; CI: 0.62-1.0) than for central venous pressure (0.451; CI: 0.17-0.74).

CONCLUSIONS: Monitoring of SVV enables real-time prediction and monitoring of the left ventricular response to preload enhancement in patients after cardiac surgery and is helpful for guiding volume therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app