Add like
Add dislike
Add to saved papers

Effect of P(i) on unloaded shortening velocity of slow and fast mammalian muscle fibers.

Chemically skinned muscle fibers, prepared from the rat medial gastrocnemius and soleus, were subjected to four sequential slack tests in Ca(2+)-activating solutions containing 0, 15, 30, and 0 mM added P(i). P(i) (15 and 30 mM) had no effect on the unloaded shortening velocity (V(o)) of fibers expressing type IIb myosin heavy chain (MHC). For fibers expressing type I MHC, 15 mM P(i) did not alter V(o), whereas 30 mM P(i) reduced V(o) to 81 plus minus 1% of the original 0 mM P(i) value. This effect was readily reversible when P(i) was lowered back to 0 mM. These results are not compatible with current cross-bridge models, developed exclusively from data obtained from fast fibers, in which V(o) is independent of P(i). The response of the type I fibers at 30 mM P(i) is most likely the result of increased internal drag opposing fiber shortening resulting from fiber type-specific effects of P(i) on cross bridges, the thin filament, or the rate-limiting step of the cross-bridge cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app