JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

EPR study of substrate binding to the Mn(II) active site of the bacterial antibiotic resistance enzyme FosA: a better way to examine Mn(II).

FosA is a manganese metalloglutathione transferase that confers resistance to the broad-spectrum antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid. The reaction catalyzed by FosA involves the attack by glutathione on fosfomycin to yield the product 1-(S-glutathionyl)-2-hydroxypropylphosphonic acid. The enzyme is a dimer of 16 kDa subunits, each of which harbors one mononuclear Mn(II) site. The coordination environment of the Mn(II) in the FosA x Mn(2+) complex is composed of a glutamate and two histidine ligands and three water molecules. Here we report EPR spectroscopic studies on FosA, in which EPR spectra were obtained at 35 GHz and 2 K using dispersion-detection rapid-passage techniques. This approach provides an absorption envelope line shape, in contrast to the conventional (slow-passage) derivative line shape, and is a more reliable way to collect spectra from Mn(II) centers with large zero-field splitting. We obtain excellent spectra of FosA bound with substrate, substrate analogue phosphate ion, and product, whereas these states cannot be studied by X-band, slow-passage methods. Simulation of the EPR spectra shows that binding of substrate or analogue causes a profound change in the electronic parameters of the Mn(II) ion. The axial zero-field splitting changes from [D] = 0.06 cm(-1) for substrate-free enzyme to 0.23 cm(-1) for fosfomycin-bound enzyme, 0.28 (1) cm(-1) for FosA with phosphate, and 0.27 (1) cm(-1) with product. Such a large zero-field splitting is uncommon for Mn(II). A simple ligand field analysis of this change indicates that binding of the phosphonate/phosphate group of substrate or analogue changes the electronic energy levels of the Mn(II) 3d orbitals by several thousand cm(-1), indicative of a significant change in the Mn(II) coordination sphere. Comparison with related enzymes (glyoxalase I and MnSOD) suggests that the change in the coordination environment on substrate binding may correspond to loss of the glutamate ligand.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app