JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Drosophila myosin phosphatase and its role in dorsal closure.

Development 2002 March
Myosin phosphatase negatively regulates nonmuscle myosin II through dephosphorylation of the myosin regulatory light chain (MRLC). Its regulatory myosin-binding subunit, MBS, is responsible for regulating the catalytic subunit in response to upstream signals and for determining the substrate specificity. DMBS, the Drosophila homolog of MBS, was identified to study the roles of myosin phosphatase in morphogenesis. The embryos defective for both maternal and zygotic DMBS demonstrated a failure in dorsal closure. In the mutant embryos, the defects were mainly confined to the leading edge cells which failed to fully elongate. Ectopic accumulation of phosphorylated MRLC was detected in lateral region of the leading edge cells, suggesting that the role of DMBS is to repress the activation of nonmuscle myosin II at the subcellular location for coordinated cell shape change. Aberrant accumulation of F-actin within the leading edge cells may correspond to the morphological aberrations of such cells. Similar defects were seen in embryos overexpressing Rho-kinase, suggesting that myosin phosphatase and Rho-kinase function antagonistically. The genetic interaction of DMBS with mutations in the components of the Rho signaling cascade also indicates that DMBS functions antagonistically to the Rho signal transduction pathway. The results indicate an important role for myosin phosphatase in morphogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app