Neurotrophin-3-mediated regeneration and recovery of proprioception following dorsal rhizotomy

Matt S Ramer, Thomas Bishop, Peter Dockery, Makarim S Mobarak, Donald O'Leary, John P Fraher, John V Priestley, Stephen B McMahon
Molecular and Cellular Neurosciences 2002, 19 (2): 239-49
Injured dorsal root axons fail to regenerate into the adult spinal cord, leading to permanent sensory loss. We investigated the ability of intrathecal neurotrophin-3 (NT3) to promote axonal regeneration across the dorsal root entry zone (DREZ) and functional recovery in adult rats. Quantitative electron microscopy showed robust penetration of CNS tissue by regenerating sensory axons treated with NT3 at 1 and 2 weeks postrhizotomy. Light and electron microscopical anterograde tracing experiments showed that these axons reentered appropriate and ectopic laminae of the dorsal horn, where they formed vesicle-filled synaptic buttons. Cord dorsum potential recordings confirmed that these were functional. In behavioral studies, NT3-treated (but not untreated or vehicle-treated) rats regained proprioception. Recovery depended on NT3-mediated sensory regeneration: preventing regeneration by root excision prevented recovery. NT3 treatment allows sensory axons to overcome inhibition present at the DREZ and may thus serve to promote functional recovery following dorsal root avulsions in humans.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"