JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats.

BACKGROUND: We are investigating a double transgenic rat (dTGR) model, in which rats transgenic for the human angiotensinogen and renin genes are crossed. These rats develop moderately severe hypertension but die of end-organ cardiac and renal damage by week 7. The heart shows necrosis and fibrosis, whereas the kidneys resemble the hemolytic-uremic syndrome vasculopathy. Surface adhesion molecules (ICAM-1 and VCAM-1) are expressed early on the endothelium, while the corresponding ligands are found on circulating leukocytes. Leukocyte infiltration in the vascular wall accompanies PAI-1, MCP-1, iNOS and Tissue Factor expression. Furthermore we show evidence that Ang II causes the upregulation of NF-kB in our model.

METHODS: We started PDTC-treatment on four weeks old dTGR (200 mg/kg sc) and age-matched SD rats. Blood-pressure- and albuminuria- measurements were monitored during the treatment period (four weeks). The seven weeks old animals were killed, hearts and kidneys were isolated and used for immunohistochemical-and electromobility shift assay analysis.

RESULTS: Chronic treatment with the antioxidant PDTC decreased blood pressure (162 plus minus 8 vs. 190 plus minus 7 mm Hg, p = 0.02). Cardiac hypertrophy index was significantly reduced (4.90 plus minus 0.1 vs. 5.77 plus minus 0.1 mg/g, p < 0.001) compared to dTGR. PDTC reduced 24 h albuminuria by 85 % (2.7 plus minus 0.5 vs. 18.0 plus minus 3.4 mg/d, p < 0.001) and prevented death significantly. Vascular injury was ameliorated in small renal and cardiac vessels. PDTC inhibited NF-kappaB binding activity in heart and kidney. Immunohistochemical analysis shows increased expression of the p65 NF-kappaB subunit in the endothelium, smooth muscles cells of damaged small vessels, infiltrated cells, glomeruli, tubuli and collecting ducts of dTGR. PDTC markedly reduced the immunoreactivity of p65.

CONCLUSION: Our data show that inhibition of NF-kappaB by PDTC markedly reduces inflammation, iNOS expression in the dTGR most likely leading to decreased cytotoxicity, and cell proliferation. Thus, NF-kappaB activation plays an important role in ANG II-induced end-organ damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app