JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells.

Multidrug resistance (MDR) is one of the main obstacles limiting the efficacy of chemotherapy treatment of tumours. One of the main causes of MDR is linked to the overexpression of P-glycoprotein (P-gp). This study aimed to characterise tetrandrine (Tet), a potent inhibitor of P-gp mediated MDR. Cytotoxicity was determined by the tetrazolium (MTT) assay. A MCF-7/adr cell xenograft model was established to investigate the effect of Tet on reversing MDR in vivo. Mechanistic experiments were conducted to examine the uptake, efflux and accumulation of doxorubicin (Dox) and Fura-2, and to assess lipid membrane fluidity. Tet potentiated the cytotoxicity of Dox; a 20.4-fold reversal of resistance was achieved in the presence of 2.5 micromol/l of Tet. Accumulation and efflux studies with the P-gp substrates, Dox and Fura-2, demonstrated that Tet inhibited the P-gp-mediated drug efflux. In addition, Tet lowered cell membrane fluidity in a concentration-dependent manner. In mice bearing the MDR MCF-7/adr cell xenografts, coadministration of Tet potentiated the antitumour activity of doxorubicin without a significant increase in toxicity. Tet was an extremely potent MDR modulator both in vitro and in vivo, without apparently enhancing the toxicity of the co-administered drugs. Hence, Tet holds great promise as a MDR modulator for the treatment of P-gp-mediated MDR cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app