JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rhythmic hippocampal slow oscillation characterizes REM sleep in humans.

Hippocampal rhythmic slow activity (RSA) is a well-known electrophysiological feature of exploratory behavior, spatial cognition, and rapid eye movement (REM) sleep in several mammalian species. Recently, RSA in humans during spatial navigation was reported, but systematic data regarding human REM sleep are lacking. Using mesio-temporal corticography with foramen ovale electrodes in epileptic patients, we report the presence of a 1.5-3-Hz synchronous rhythmic hippocampal oscillation seemingly specific to REM sleep. This oscillation is continuous during whole REM periods, is clearly observable by visual inspection, and appears in tonic and phasic REM sleep episodes equally. Quantitative analysis proved that this 1.5-3-Hz frequency band significantly differentiates REM sleep from waking and slow-wake sleep (SWS). No other frequency band proved to be significant or showed this high rhythmicity. Even in temporo-lateral surface recordings, although visually much less striking, the relative power of the 1.5-3-Hz frequency band differentiates REM sleep from other states with statistical significance. This could mean that the 1.5-3-Hz hippocampal RSA spreads over other cortical areas in humans as in other mammals. We suggest that this oscillation is the counterpart of the hippocampal theta of mammalian REM sleep, and that the 1.5-3-Hz delta EEG activity is a basic neurophysiological feature of human REM sleep.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app