Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP.

Excess nitric oxide (NO) induces apoptosis in some cell types including macrophages; however, the cascade of NO-mediated apoptosis is not fully understood. We investigated the initial steps of NO-mediated apoptosis in mouse macrophage-like RAW 264.7 cells. When cells were treated with bacterial lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma), NO-mediated apoptosis occurred. Under these conditions, p53 accumulation was not observed, indicating that DNA damage is not the main trigger of NO-mediated apoptosis. On the other hand, mRNA and protein for CHOP, a transcription factor known to be induced by endoplasmic reticulum (ER) stress, were induced. The CHOP induction by LPS/IFN-gamma treatment preceded cytochrome c release from mitochondria. In addition, p90ATF6, an ER membrane-bound transcription factor involved in ER stress response, was cleaved to its active soluble form p50ATF6, which was transported to nucleus and bound to the ER stress response element of the CHOP gene. In the luciferase reporter assay, both the CHOP-binding element of the Rous sarcoma virus long terminal repeat and ER stress response element of the CHOP gene were activated by LPS/IFN-gamma treatment. When RAW 264.7 cells or COS-7 cells were transfected with expression plasmids for CHOP, p90ATF6, or p50ATF6, cell death was observed. In addition, apoptosis induced by p50ATF6 was prevented by a CHOP dominant negative form as well as by an ATF6 dominant negative form, and LPS/IFN-gamma-induced apoptosis was prevented by the CHOP dominant negative form. Peritoneal macrophages from CHOP knockout mice showed resistance to NO-induced apoptosis. These results indicate that the ER stress pathway involving ATF6 and CHOP plays a key role in NO-mediated apoptosis in macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app