JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Insulin-like growth factor 2 (IGF2 ) and IGF-binding protein 1 (IGFBP1) gene variants are associated with overfeeding-induced metabolic changes.
Diabetologia 2001 December
AIMS/HYPOTHESIS: The aim of this study was to investigate the role of insulin-like growth factor 1 (IGF1), IGF2, IGF binding protein 1 (IGFBP1) and IGFBP3 gene variants on the metabolic changes observed in response to a 100-day overfeeding protocol conducted with 12 pairs of monozygotic twins.
METHODS: Genotyping was done by PCR-RFLP and DNA sequencer methods. Body fat measurements included hydrodensitometry and abdominal fat from computed tomography. Plasma glucose and insulin during fasting and in response to an OGTT were assayed. Plasma lipids were measured enzymatically.
RESULTS: In response to caloric surplus, fasting plasma insulin (p < 0.05) and OGTT insulin (p = 0.004) but not glucose area, increased more among the subjects with IGF2 Apa I GG (n = 12) than those with AA + AG (n = 12). The changes were independent of changes in total fatness. The subjects with IGFBP1 Bgl II AA (n = 8) showed greater increases in abdominal visceral fat (p < 0.01), OGTT insulin area (p = 0.05) and total cholesterol (p < 0.03) with overfeeding than the subjects with AG + GG (n = 16). IGFBP3 Nde I and the IGF1 (CT)n markers were not associated with responsiveness to overfeeding.
CONCLUSION/INTERPRETATION: Insulin sensitivity decreased in the subjects with IGF2 Apa I GG and the subjects with IGFBP1 Bgl II AA showed an accumulation of abdominal visceral fat and the early symptoms of the metabolic syndrome after long-term caloric surplus. Genetic variation at the IGF2 and IGFBP1 loci could be among the factors responsible for the inter-individual differences observed in the response to long-term alterations in energy balance and should be further investigated in larger cohorts.
METHODS: Genotyping was done by PCR-RFLP and DNA sequencer methods. Body fat measurements included hydrodensitometry and abdominal fat from computed tomography. Plasma glucose and insulin during fasting and in response to an OGTT were assayed. Plasma lipids were measured enzymatically.
RESULTS: In response to caloric surplus, fasting plasma insulin (p < 0.05) and OGTT insulin (p = 0.004) but not glucose area, increased more among the subjects with IGF2 Apa I GG (n = 12) than those with AA + AG (n = 12). The changes were independent of changes in total fatness. The subjects with IGFBP1 Bgl II AA (n = 8) showed greater increases in abdominal visceral fat (p < 0.01), OGTT insulin area (p = 0.05) and total cholesterol (p < 0.03) with overfeeding than the subjects with AG + GG (n = 16). IGFBP3 Nde I and the IGF1 (CT)n markers were not associated with responsiveness to overfeeding.
CONCLUSION/INTERPRETATION: Insulin sensitivity decreased in the subjects with IGF2 Apa I GG and the subjects with IGFBP1 Bgl II AA showed an accumulation of abdominal visceral fat and the early symptoms of the metabolic syndrome after long-term caloric surplus. Genetic variation at the IGF2 and IGFBP1 loci could be among the factors responsible for the inter-individual differences observed in the response to long-term alterations in energy balance and should be further investigated in larger cohorts.
Full text links
Trending Papers
Management of type 2 diabetes in the new era.Hormones : International Journal of Endocrinology and Metabolism 2023 September 14
Beta-blocker therapy in patients with acute myocardial infarction: not all patients need it.Acute and critical care. 2023 August
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Pharmacological Treatments in Heart Failure With Mildly Reduced and Preserved Ejection Fraction: Systematic Review and Network Meta-Analysis.JACC. Heart Failure 2023 August 26
Hypertensive Heart Failure.Journal of Clinical Medicine 2023 August 3
SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain.Journal of Cardiovascular Development and Disease 2023 July 31
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app