JOURNAL ARTICLE

Insulin-like growth factor-1 and transforming growth factor-beta1 accelerates osteotomy healing using polylactide-coated implants as a delivery system: a biomechanical and histological study in minipigs

M Raschke, B Wildemann, P Inden, H Bail, A Flyvbjerg, J Hoffmann, N P Haas, G Schmidmaier
Bone 2002, 30 (1): 144-51
11792577
Stimulation of bone healing and bone formation through local application of growth factors from implants may improve the clinical outcome in fracture treatment. Previous studies demonstrated a high mechanical stability of a thin poly(D,L-lactide) (PDLLA) coating on metallic implants that can withstand the process of intramedullary insertion. Following an initial peak, 80% of incorporated insulin-like growth factor-1 (IGF-1) and transforming growth factor-beta1 (TGF-beta1) were released continuously, within 42 days. The goal of the present study is evaluation of the coated implants on fracture healing in a large animal model. A midshaft osteotomy (1 mm gap) of the right tibia of Yucatan minipigs was stabilized with uncoated vs. coated titanium interlocking nails (5 mm). X-ray examinations and blood analyses (including IGF-1 and IGF-binding proteins) were performed, and body weight and body temperature were taken throughout the experiment. After 28 days, both tibiae were dissected for mechanical torsional testing and histomorphometric analyses. No differences were found in the blood analyses, body weight, or temperature due to the coating or the incorporated growth factors between the groups. X-ray examinations revealed a faster consolidation of the osteotomy in the growth factor-treated group. Biomechanical testing showed a significantly higher torsional stiffness and maximum load. Progressive remodeling was observed in the histological and histomorphometric analyses with a larger callus volume in the growth factor group compared with the control groups. We conclude that local application of growth factors from a biodegradable PDLLA coating of intramedullary implants accelerates bone healing in a large animal model without systemic side effects.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
11792577
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"