JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Strial marginal cells play a role in basement membrane homeostasis: in vitro and in vivo evidence.

Hearing Research 2002 January
The interaction of extracellular matrix and receptors plays a role in tissue homeostasis. The thickened strial capillary basement membrane (SCBM) reported in animal models of presbycusis and Alport's syndrome might be secondary to elevated synthesis and/or decreased turnover of specific basement membrane (BM) components. In this study, expression of specific BM proteins, integrin receptors and mediators of matrix turnover in the murine lateral wall were determined using cDNA probes and antibodies. The presence of collagen alpha1 and alpha2(IV) and laminin-8 in the SCBM was verified. The integrin subunits alpha3, alphav and beta1, cell surface receptors for the BM proteins, localized primarily to the SCBM and/or the strial marginal cells as did TIMP-3, a tissue inhibitor of matrix metalloproteinase. The epithelial cell line SV-k1, derived from the lateral wall of the 'immortomouse', showed expression of the same BM proteins as well as demonstrating the presence of markers specific to strial marginal cells, namely Na,K-ATPase alpha1 and beta2 subunits. Thus, the cultured cells are identified as deriving from marginal cells of the stria vascularis. Moreover, these data suggest that a culture system using this marginal cell line will be useful to delineate mechanisms underlying the pathologic accumulation of extracellular matrix in the SCBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app