CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Knee and ankle joint stiffness in sprint running.

INTRODUCTION: Stiffness has often been considered as a regulated property of the neuromuscular system. The purpose of this study was to examine the ankle and knee joint stiffness regulation during sprint running.

METHODS: Ten male sprinters ran at the constant relative speeds of 70, 80, 90, and 100% over a force platform, and ground reaction forces, kinematic, and EMG parameters were collected.

RESULTS: The results indicated that with increasing running speed the average joint stiffness (change in joint moment divided by change in joint angle) was constant (7 N x m x deg(-1)) in the ankle joint and increased from 17 to 24 N x m x deg(-1) (P < 0.01) in the knee joint.

CONCLUSION: The observed constant ankle joint stiffness may depend on (constant) tendon stiffness because of its dominating role in triceps surae muscle-tendon unit. Thus, we conclude that in sprint running the spring-like behavior of the leg might be adjusted by changing the stiffness of the knee joint. However, in complicated motor task, such as sprint running, ankle and knee joint stiffness might be controlled by the individual mechanical and neural properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app