JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biological features of mesenchymal stem cells from human bone marrow.

OBJECTIVE: To study the biological characteristics of mesenchymal stem cells (MSCs) from human bone marrow.

METHODS: A culture of mesenchymal stem cells was initiated from bone marrow low-density mononuclear cells separated by Percoll Centrifugation and maintained in low-glucose Dulbecco's modified Eagle's medium (DMEM) with 10% selected fetal calf serum. Cell growth pattern and its responses to cytokines were evaluated by trypan blue exclusion and MTT test, respectively. Cell cycle and surface antigenic features were analyzed by flow cytometry technique. Cytochemistry characteristics of MSCs were determined.

RESULTS: Easy-handling methods to isolate and culture expand MSCs were developed in this study. MSCs were unique in their phenotypes. They were positive for CD29, CD44, CD166, and negative for CD34, CD45, HLA-DR and Ulex europaeus. Cytochemistry evaluation showed that MSCs were homogeneously positive for acid alpha-naphthl acetate esterase (ANAE), glycogen (periodic acid Schiff reaction, PAS), and negative for acid phosphatase (ACP) and the Sudan black reaction (SB). Around 5% of them were positive for alkaline phosphatase (ALP). The cells had a population doubling time of 30 hours and cell cycle analysis showed that approximately 10% of them were in S phase. MSCs grew at significantly different rates when incubated in the presence of various recombinant human cytokines, of which interferon gamma, tumor necrosis factor alpha, stem cell factor and insulin-like growth factor promoted the proliferation of MSCs dramatically, while others tested had no effects on cell growth.

CONCLUSIONS: MSCs are a homogenous population of cells that have unique growth, phenotypical and cytochemical characteristics. Furthermore, the diverse responses of MSCs to different cytokines provide a clue for the selection of optimal expansion and maintenance of MSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app