Add like
Add dislike
Add to saved papers

Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension.

Circulation 2002 January 2
BACKGROUND: Because of high pulmonary vascular resistance in patients with primary pulmonary hypertension (PPH), right atrial pressure may exceed left atrial pressure during exercise, resulting in a right-to-left shunt via a patent foramen ovale (PFO). This shunting would disturb arterial PCO2 and H+ homeostasis if the pulmonary blood were not simultaneously hyperventilated to compensate for the high CO2 and H+ in the shunted blood. This article first hypothesizes and then describes unique changes in gas exchange when right-to-left exercise-induced shunting (EIS) occurs.

METHODS AND RESULTS: Retrospectively, the cardiopulmonary exercise tests of 71 PPH patients were studied. Criteria postulated to document hyperventilation of the pulmonary blood flow due to a right-to-left EIS were (1) an abrupt and sustained increase in end-tidal O2 with a simultaneous sustained decrease in end-tidal CO2; (2) an abrupt and sustained increase in the respiratory exchange ratio; and (3) usually, an associated decline in pulse oximetry saturation. Each patient was evaluated for a PFO with resting echocardiography. The investigators interpreting the gas exchange evidence of EIS were blinded to the echocardiographic readings. Forty-five percent of the patients had demonstrable EIS by gas exchange criteria. Almost all were also positive for a PFO by echocardiography. Using the resting echocardiograph as the reference, the sensitivity, specificity, positive and negative predictive values, and accuracy were all between 90% to 96%.

CONCLUSIONS: Exercise-induced right-to-left shunting can be detected by noninvasive, cardiopulmonary exercise testing in patients with PPH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app