JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The osteoprotegerin/receptor activator of nuclear factor kappaB/receptor activator of nuclear factor kappaB ligand system in cartilage.

OBJECTIVE: The receptor activator of nuclear factor kappaB (RANK) is a member of the tumor necrosis factor receptor family. It is activated by the secreted or cell surface-bound RANK ligand (RANKL). Osteoprotegerin (OPG) is a soluble nonsignaling receptor for RANKL and interferes with RANK activation. This receptor-ligand system regulates the differentiation of osteoclasts and dendritic cells. The present study examined human articular cartilage for the expression of these molecules and the role of RANKL in the regulation of chondrocyte function.

METHODS: Normal and osteoarthritic (OA) human articular cartilage was used for explant tissue culture or for isolation of chondrocytes and cell culture. Expression of RANK, RANKL, and OPG was analyzed by immunohistochemistry, Western blotting, or reverse transcription-polymerase chain reaction. Recombinant RANKL was added to cartilage or chondrocyte cultures, and gene expression, collagenase and nitric oxide production, and NF-kappaB activation were determined.

RESULTS: RANK, RANKL, and OPG messenger RNA (mRNA) were expressed in normal cartilage. By immunohistochemistry, RANK, RANKL, and OPG were detected in the superficial zone of normal cartilage. OA cartilage contained increased levels of OPG mRNA, and expression of the 3 proteins extended into the midzone of OA cartilage. OPG was detected by Western blotting, and was increased in response to interleukin-1beta stimulation. OPG, RANK, and RANKL protein were also detected in cultured chondrocytes. Addition of exogenous RANKL did not activate NF-kappaB, induce expression of genes encoding proinflammatory mediators in chondrocytes, or stimulate the production of collagenase and nitric oxide.

CONCLUSION: These results demonstrate the expression of OPG, RANK, and RANKL in cartilage. However, RANKL does not activate human articular chondrocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app