IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Novel esters of glaucarubolone as inducers of terminal differentiation of promyelocytic HL-60 cells and inhibitors of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesion formation in mouse mammary organ culture.

In an effort to discover new chemotherapeutic/chemopreventive agents from natural sources, brusatol (1) was found to induce HL-60 cellular differentiation, accompanied by strong antiproliferative and cytotoxic effects. A series of natural and semisynthetic quassinoids (1-48) was designed to effect both antiproliferative and differentiation-inducing properties. Compounds were assessed in vitro using the HL-60 promyelocytic cell model. Changes in activity due to structural modification of the core structure glaucarubolone (24) were consistent with activities reported in other cell systems. However, the following were novel SAR findings: (1) semisynthetic analogues with a hydroxylated ring at the beta-position of the ester side chain at C-15 were able to induce cellular differentiation at concentrations lower than those inducing cell growth arrest, and (2) quassinoids inhibiting DNA synthesis with greater efficacy than reducing cellular viability possessed alkyl substitutions at the alpha-position of the C-15 ester side chain. Analogues from this latter group and brusatol (1) and bruceantin (2) inhibited dimethylbenz(a)anthracene-induced preneoplastic lesion formation in a mouse mammary organ culture. The novel finding of 1 and glaucarubolone analogues as potent inducers of differentiation leads to potential novel applications in the field of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app