Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Signaling through the Smad pathway by insulin-like growth factor-binding protein-3 in breast cancer cells. Relationship to transforming growth factor-beta 1 signaling.

We previously demonstrated in T47D cells transfected to express the transforming growth factor-beta receptor type II (TGF-betaRII) that insulin-like growth factor binding protein-3 (IGFBP-3) could stimulate Smad2 and Smad3 phosphorylation, potentiate TGF-beta1-stimulated Smad phosphorylation, and cooperate with exogenous TGF-beta1 in cell growth inhibition (Fanayan, S., Firth, S. M., Butt, A. J., and Baxter, R. C. (2000) J. Biol. Chem. 275, 39146-39151). This study further explores IGFBP-3 signaling through the Smad pathway. Like TGF-beta1, natural and recombinant IGFBP-3 stimulated the time- and dose-dependent phosphorylation of TGF-betaR1 as well as Smad2 and Smad3. This effect required the presence of TGF-betaRII. IGFBP-3 mutated in carboxyl-terminal nuclear localization signal residues retained activity in TGF-betaR1 and Smad phosphorylation, whereas IGFBP-5 was inactive. Immunoneutralization of endogenous TGF-beta1 suggested that TGF-beta1 was not essential for IGFBP-3 stimulation of this pathway, but it increased the effect of IGFBP-3. IGFBP-3, like TGF-beta1, elicited a rapid decline in immunodetectable Smad4 and Smad4.Smad2 complexes. IGFBP-3 and nuclear localization signal mutant IGFBP-3 stimulated the activation of the plasminogen activator inhibitor-1 promoter but was not additive with TGF-beta, suggesting that this end point is not a direct marker of the IGFBP-3 effect on cell proliferation. This study defines a signaling pathway for IGFBP-3 from a cell surface receptor to nuclear transcriptional activity, requiring TGF-betaRII but not dependent on the nuclear translocation of IGFBP-3. The precise mechanism by which IGFBP-3 interacts with the TGF-beta receptor system remains to be established.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app