JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The hydrophobins HFBI and HFBII from Trichoderma reesei showing efficient interactions with nonionic surfactants in aqueous two-phase systems.

Fungal hydrophobins are a group of surface active, self-assembling proteins. The filamentous fungus Trichoderma reesei produces two (class II) hydrophobins, HFBI and HFBII. We have studied how these water-soluble hydrophobins behave in two-phase systems using a series of nonionic surfactants with different characteristics. It was found that both hydrophobins, but especially HFBI, had a very high affinity for the surfactants. The highest partitioning coefficient, over 2500, was observed for HFBI with C(11)EO(2). Reducing the disulfides in the protein resulted in a complete loss of affinity for the surfactant, which demonstrates that the interaction is dependent on the disulfide-stabilized conformation. The hydrophobins could be efficiently extracted back from the surfactant phase by addition of alcohols such as isobutanol. Effects of the type of surfactant, temperature, pH, and ionic strength were investigated. The use of this method for purifying the proteins from crude fungal culture supernatants is demonstrated and implications of the protein-polymer interaction are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app