Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The stability of gingerol and shogaol in aqueous solutions.

Gingerols, pungent principles of ginger (the rhizome of Zingiber officinale), are biologically active components that may make a significant contribution towards medicinal applications of ginger and some products derived from ginger. Gingerols, however, are thermally labile due to the presence of a beta-hydroxy keto group in the structure, and undergo dehydration readily to form the corresponding shogaols. This study investigated the stability of [6]-gingerol [5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)decan-3-one] at temperatures ranging from 37 to 100 degrees C in aqueous solutions, at pH 1, 4, and 7. Quantitative measurements of [6]-gingerol and its major degradation product [6]-shogaol [1-(4-hydroxy-3-methoxyphenyl)decan-4-ene-3-one] were performed by HPLC. Kinetics of [6]-gingerol degradation was characterized by least square fitting of a rate equation. It was found that gingerol exhibited novel reversible kinetics, in which it undergoes dehydration-hydration transformations with shogaol, the major degradation product. Degradation rates were found to be pH dependent with greatest stability observed at pH 4. The reversible degradation of [6]-gingerol at 100 degrees C and pH 1 was relatively fast and reached equilibrium within 2 h. Activation energies for the forward and reverse reactions for [6]-gingerol were calculated from the Arrhenius equation using reaction rates obtained at temperatures ranging from 37 to 100 degrees C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app