COMPARATIVE STUDY
JOURNAL ARTICLE

Production of cAMP by adrenomedullin in human oligodendroglial cell line KG1C: comparison with calcitonin gene-related peptide and amylin

Y Uezono, E Nakamura, Y Ueda, I Shibuya, Y Ueta, H Yokoo, T Yanagita, Y Toyohira, H Kobayashi, N Yanagihara, A Wada
Brain Research. Molecular Brain Research 2001 December 16, 97 (1): 59-69
11744163
The actions and the presence of adrenomedullin (AM) were investigated in cultured human oligodendroglial cell line KG1C. AM and AM mRNA were detected in KG1C cells by immunohistochemistry and RT-PCR. mRNAs for calcitonin receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMPs) 1, 2 and 3 but not for calcitonin receptors were detected in the cells, while mRNAs for CRLR, calcitonin receptors and all RAMPs were detected in the human cerebellum. Application of AM resulted in time- and concentration-dependent increases in the cAMP level of KG1C cells. Calcitonin gene-related peptide (CGRP) and amylin, peptides structurally related to AM, also increased cAMP. The potencies for the cAMP production of the three peptides were CGRP > or =AM > amylin with EC(50) of 8, 18, 90 nM, respectively. The responses induced by AM were strongly inhibited by the CGRP(1) receptor antagonist human CGRP(8-37), and inhibited also by the AM receptor antagonist human AM(22-52). In contrast, the responses induced by CGRP or amylin were inhibited only by CGRP(8-37) and not by AM(22-52). The responses induced by all three peptides were unaffected by the amylin receptor antagonist human amylin(8-37). The CGRP(2) receptor agonist human [Cys(Acm)(2,7)]CGRP significantly increased the cAMP level but the increase was smaller than that caused by CGRP. This increase in cAMP was unaffected by CGRP(8-37), AM(22-52) or by amylin(8-37). These results suggest that in KG1C cells, AM increases cAMP through AM and CGRP(1) receptors, whereas CGRP does so through CGRP(1) and CGRP(2) receptors, and amylin exerts its effects through CGRP(1) receptors. Collectively, these findings imply that AM released from oligodendroglial cells may play a role in the regulation of oligodendrocytes via autocrine/paracrine through AM receptors and CGRP(1) receptors.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
11744163
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"