Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Autonomic dysreflexia in a mouse model of spinal cord injury.

Most experimental studies of spinal cord injury have centered on the rat as an experimental model. A shift toward a mouse model has occurred in recent years because of its usefulness as a genetic tool. While many studies have concentrated on motor function and the inflammatory response following spinal cord injury in the mouse, the development of autonomic dysreflexia after injury has yet to be described. Autonomic dysreflexia is a condition in which episodic hypertension develops after injuries above the mid-thoracic segment of the spinal cord. In this study 129Sv mice received a spinal cord transection at the second thoracic segment. The presence of autonomic dysreflexia was assessed 2 weeks later. Blood pressure responses to stimulation were as follows: moderate cutaneous pinch caudal to the injury (35+/-6 mm Hg), tail pinch (25+/-7 mm Hg), and a 0.3 ml balloon distension of the colon (37+/-4 mm Hg). Previous reports have suggested that small diameter primary afferent fiber sprouting after spinal cord injury may be responsible for the development of autonomic dysreflexia. In order to determine whether autonomic dysreflexia in the mouse may be caused by a similar mechanism, the size of the small diameter primary afferent arbor in spinal cord-injured and sham-operated animals was assessed by measuring the area occupied by calcitonin gene-related peptide-immunoreactive fibers. The percentage increase in the area of the small diameter primary afferent arbor in transected over sham-operated spinal cords was 46%, 45% and 80% at spinal segments thoracic T5-8, thoracic T9-12 and thoracic T13-lumbar L2 respectively. This study demonstrates the development of autonomic dysfunction in a mouse model of spinal cord injury that is associated with sprouting of calcitonin gene-related peptide fibers. These results provide strong support for the use of this mouse model of spinal cord injury in the study of autonomic dysreflexia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app