Add like
Add dislike
Add to saved papers

Stability of attractive Bose-Einstein condensates in a periodic potential.

Using a standing light wave potential, a stable quasi-one-dimensional attractive dilute-gas Bose-Einstein condensate can be realized. In a mean-field approximation, this phenomenon is modeled by the cubic nonlinear Schrödinger equation with attractive nonlinearity and an elliptic function potential of which a standing light wave is a special case. New families of stationary solutions are presented. Some of these solutions have neither an analog in the linear Schrödinger equation nor in the integrable nonlinear Schrödinger equation. Their stability is examined using analytic and numerical methods. Trivial-phase solutions are experimentally stable provided they have nodes and their density is localized in the troughs of the potential. Stable time-periodic solutions are also examined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app