Add like
Add dislike
Add to saved papers

Solid-state and solution properties of the lanthanide complexes of a new heptadentate tripodal ligand: a route to gadolinium complexes with an improved relaxation efficiency.

Inorganic Chemistry 2001 December 18
The tripodal ligand (alpha,alpha',alpha' 'nitrilotri(6-methyl-2-pyridinecarboxylic acid)) (H(3)tpaa) forms a Gd(III) complex which has a relaxivity (r(1p) = 13.3 mM(-1) s(-1) at 25 degrees C and at 60 MHz) remarkably higher than those of the currently clinically used contrast agents based on octacoordinate polyaminocarboxylate complexes (3.5-4.7 mM(-1) s(-1)) and a reasonably good thermodynamic stability. The crystal structure of the ligand and of its La, Nd, Eu, Gd, Tb, Ho, Tm, Yb, and Lu complexes have been determined by X-ray crystallography. The neutral H(3)tpaa molecule adopts, in the solid state, a preorganized tripodal conformation in which the three H(3)tpaa arms are located on the same side of the molecule, ready to bind a metal ion in a heptadentate coordination mode. The structures of the Ln(III) complexes vary along the series for their nuclearity and number of water molecules coordinated to the metal, and a tetrameric structure is observed for the La(3+) ion (9- and 10-coordinate metal centers), dimeric structures are formed from the Nd(3+) ion through the Yb(3+) ion (9-coordinate), and a monomeric structure results for Lu(3+) (8-coordinate). The relaxivity studies presented here suggest that the high relaxivity of the Gd(tpaa) complex is mainly the consequence of a shorter bound water proton-Gd(III) distance associated with a probable water coordination equilibrium between tris(aqua) and bis(aqua) complexes, giving raise to a mean number of coordinated water molecules q > 2. Both effects are strongly related to the ligand flexibility, which allows for a large volume available for water binding. The observed rapid water exchange rate is probably due to the presence of a low-energy barrier between 10-, 9-, and 8- coordinate geometries. Although the low solubility of the Gd complex of tpaa prevents its practical application as an MRI contrast agent, the straightforward introduction of substituents on the pyridine rings allows us to envisage ligands with a higher water solubility, containing functional groups leading to macromolecular systems with very high relaxivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app