JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria.

Biochemistry 2001 December 19
Photosynthetic light harvesting is a unique life process that occurs with amazing efficiency. Since the discovery of the structure of the bacterial peripheral light-harvesting complex (LH2), this process has been studied using a variety of advanced laser spectroscopic methods. We are now in a position to discuss the physical origins of excitation energy transfer and trapping in the LH2 and LH1 antennae of photosynthetic purple bacteria. We demonstrate that the time evolution of the state created by the light is determined by the combined action of excitonic pigment-pitment interactions, energetic disorder, and coupling to nuclear motion in a pigment-protein complex. A quantitative fit of experimental data using Redfield theory allowed us to determine the pathways and time scales of exciton and vibrational relaxation and analyze separately different contributions to the measured transient absorption dynamics. Furthermore, these dynamics were observed to be strongly dependent on the excitation wavelength. A numerical fit of this dependence turns out to be extremely critical to a variation of the structure and disorder parameters and, therefore, can be used as a test for different antenna models (disordered ring, elliptical deformations, correlated disorder, etc.). The calculated equilibration dynamics in the exciton basis allow a visualization of the exciton motion using a density matrix picture in real space.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app