JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Distribution and amino acid content of enkephalin-immunoreactive inputs onto juxtacellularly labelled bulbospinal barosensitive neurons in rat rostral ventrolateral medulla.

The activity of bulbospinal (presympathetic) vasomotor neurons of the rostral ventrolateral medulla is modulated pre- and postsynaptically by exogenously applied opioid agonists. To determine whether these neurons receive direct opioid inputs, we examined the relationship between bulbospinal barosensitive neurons and nerve terminals immunoreactive for enkephalin in the rostral ventrolateral medulla of rats. By light microscopy, we mapped the distribution of close appositions by enkephalin-immunoreactive varicosities on 10 bulbospinal barosensitive neurons labelled in vivo with biotinamide. We also examined four labelled neurons ultrastructurally for synapses by enkephalin-immunoreactive terminals and determined with post-embedding immunogold labelling whether these enkephalin-positive terminals contained amino acids. Enkephalin-immunoreactive varicosities closely apposed all bulbospinal barosensitive neurons. Maps of the dendritic distribution of appositions indicated that fast-conducting bulbospinal barosensitive neurons with myelinated axons (conduction velocity >3 m/s; n=3) received many appositions (up to 470/neuron); and slowly conducting neurons with unmyelinated axons (conduction velocity <0.90 m/s; n=3), substantially fewer. Ultrastructural analysis of three fast- and one slowly conducting bulbospinal barosensitive neurons revealed numerous synapses from enkephalin-immunoreactive terminals on cell bodies and dendrites. Enkephalin-positive terminals synapsing on bulbospinal barosensitive neurons contained one or more amino acid: GABA+glycine, glutamate alone or GABA+glutamate. Enkephalin-immunoreactive terminals located near biotinamide-labelled cells contained a similar variety of amino acids. In summary, enkephalin-immunoreactive terminals in the rostral ventrolateral medulla densely innervate lightly myelinated presympathetic neurons and more sparsely those with unmyelinated axons. Enkephalin is present in both excitatory (glutamate-immunoreactive) and inhibitory (GABA- and/or glycine-immunoreactive) terminals. The data suggest that endogenous enkephalin inhibits amino acid release from terminals that innervate bulbospinal barosensitive neurons of the rostral ventrolateral medulla.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app