Add like
Add dislike
Add to saved papers

Microbial degradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) contaminated groundwater in Korea.

A mixed culture derived from a gasoline-contaminated aquifer in Korea was enriched on toluene at 25 degrees C. A study was conducted to characterize the substrate interaction of BTEX by toluene-enriched consortia and determine the effects of initial BTEX concentration on BTEX degradation. Substrate degradation patterns in individual aromatics were found to differ significantly from patterns for aromatics in mixtures. In the experiment of a single substrate, toluene was degraded fastest, followed by benzene, ethylbenzene, and the xylenes. In BTEX mixtures, degradation followed the order of toluene, ethylbenzene, benzene, and the xylenes. The studies conducting with toluene-enriched consortia evaluated substrate interactions by the concurrent presence of multiple BTEX compounds and revealed a range of substrate interaction patterns including no interaction, stimulation, inhibition, and cometabolism. The simultaneous presence of benzene and toluene were degraded with a slight inhibitory effect on each other. Ethylbenzene was shown to be the most potent inhibitor of BTEX degradation. p-xylene also inhibited the degradation of benzene, toluene, and ethylbenzene, whereas the presence of either benzene or toluene enhanced the degradation of ethylbenzene and the xylenes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app