Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Transcriptional control of intestinal cytochrome P-4503A by 1alpha,25-dihydroxy vitamin D3.

It was previously shown that CYP3A4 is induced in the human intestinal Caco-2 cell model by treatment with 1alpha,25-dihydroxy vitamin D3 (1,25-D3). We demonstrate the vitamin D analog, 19-nor-1alpha,25-dihydroxy vitamin D2, is also an effective inducer of CYP3A4 in Caco-2 cells, but with half the potency of 1,25-D3. We report that treatment of LS180 cells, a human intestinal cell line, with 1 to 10 nM 1,25-D3 dose dependently increased CYP3A4 protein and CYP3A4 mRNA expression. CYP3A4- and CYP3A23-promoter-Luciferase reporter constructs transiently transfected into LS180 cells were transcriptionally activated in a dose-dependent manner by 1,25-D3, whereas mutation of the nuclear hormone receptor binding motif (ER6) in the CYP3A4 promoter abrogated 1,25-D3 activation of CYP3A4. Although the CYP3A4 ER6 promoter element has been shown to bind the pregnane X receptor (PXR), this receptor does not mediate 1,25-D3 induction of CYP3A4 because a) PXR is not expressed in Caco-2 cells; b) PXR mRNA expression is not induced by 1,25-D3 treatment of LS180 cells; and c) the ligand binding domain of human PXR was not activated by 1,25-D3. 1,25-D3 uses the vitamin D receptor to induce CYP3A4 because a) the vitamin D receptor (VDR)-retinoid X receptor (RXR) heterodimer binds specifically to the CYP3A4 ER6; b) selective mutation of the CYP3A4 ER6 disrupted the binding of VDR-RXR; and c) reporter constructs containing only three copies of the CYP3A4 ER6 linked to a TK-CAT reporter were activated by 1,25-D3 only in cells cotransfected with a human VDR expression plasmid. These data support the hypothesis that 1,25-D3 and VDR induce expression of intestinal CYP3A by binding of the activated VDR-RXR heterodimer to the CYP3A PXR response element and promoting gene transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app