JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Tissue-engineered skin. Current status in wound healing.

Tissue-engineered skin is a significant advance in the field of wound healing and was developed due to limitations associated with the use of autografts. These limitations include the creation of a donor site which is at risk of developing pain, scarring, infection and/or slow healing. A number of products are commercially available and many others are in development. Cultured epidermal autografts can provide permanent coverage of large area from a skin biopsy. However, 3 weeks are needed for graft cultivation. Cultured epidermal allografts are available immediately and no biopsy is necessary. They can be cryopreserved and banked, but are not currently commercially available. A nonliving allogeneic acellular dermal matrix with intact basement membrane complex (Alloderm) is immunologically inert. It prepares the wound bed for grafting allowing improved cultured allograft 'take' and provides an intact basement membrane. A nonliving extracellular matrix of collagen and chondroitin-6-sulfate with silicone backing (Integra) serves to generate neodermis. A collagen and glycosaminoglycan dermal matrix inoculated with autologous fibroblasts and keratinocytes has been investigated but is not commercially available. It requires 3 to 4 weeks for cultivation. Dermagraft consists of living allogeneic dermal fibroblasts grown on degradable scaffold. It has good resistance to tearing. An extracellular matrix generated by allogeneic human dermal fibroblasts (TransCyte) serves as a matrix for neodermis generation. Apligraf is a living allogeneic bilayered construct containing keratinocytes, fibroblasts and bovine type I collagen. It can be used on an outpatient basis and avoids the need for a donor site wound. Another living skin equivalent, composite cultured skin (OrCel), consists of allogeneic fibroblasts and keratinocytes seeded on opposite sides of bilayered matrix of bovine collagen. There are limited clinical data available for this product, but large clinical trials are ongoing. Limited data are also available for 2 types of dressing material derived from pigs: porcine small intestinal submucosa acellular collagen matrix (Oasis) and an acellular xenogeneic collagen matrix (E-Z-Derm). Both products have a long shelf life. Other novel skin substitutes are being investigated. The potential risks and benefits of using tissue-engineered skin need to be further evaluated in clinical trials but it is obvious that they offer a new option for the treatment of wounds.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app