Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation.

The present study investigates the oxidation of methyl tert-butyl ether (MTBE) by conventional ozonation and the advanced oxidation process (AOP) ozone/hydrogen peroxide under drinking water treatment conditions. The major degradation products identified were tert-butyl formate (TBF), tert-butyl alcohol (TBA), 2-methoxy-2-methyl propionaldehyde (MMP), acetone (AC), methyl acetate (MA), hydroxyisobutyraldehyde (HiBA), and formaldehyde (FA). The rate constants of the reaction of ozone and OH radicals with MTBE were found to be 0.14 and 1.9 x 10(9) M(-1) s(-1), respectively. The rate constants for the same oxidation processes were also measured for the degradation products TBF, MMP, MA, and HiBA (k(O3-TBF) = 0.78 M(-1) s(-1); k(OH-TBF) = 7.0 x 10(8) M(-1) s(-1); k(O3-MMP) = 5 M(-1) s(-1); k(OH-MMP) = 3 x 10(9) M(-1) s(-1), k(O3-MA) = 0.09 M(-1) s(-1), k(O3-HiBA) = 5 M(-1) s(-1); k(OH-HiBA) = 3 x 10(9) M(-1) s(-1)). Since all compounds reacted slowly with molecular ozone, only the degradation pathway of MTBE with OH radicals has been determined, including the formation of primary degradation products. In experiments performed with several natural waters, the efficiency of MTBE elimination and the formation of bromate as disinfection byproduct have been measured. With a bromide level of 50 microg/L, only 35-50% of MTBE could be eliminated by the AOP O3/H2O2 without exceeding the current drinking water standard of bromate (10 microg/L). The transient concentrations of MTBE and its primary degradation products were modeled using a combination of kinetic parameters (degradation product distribution and rate constants) together with the ozone and OH radical concentration and were in good agreement with the experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app