JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of a cold-responsive Lt-Cor gene and development of freezing tolerance during cold acclimation in wheat (Triticum aestivum L.).

Time-courses of the development of freezing tolerance and the expression of a cold-responsive gene wlt10 were monitored during cold acclimation in wheat (Triticum aestivum L.). Bioassay showed that cold acclimation conferred much higher freezing tolerance on a winter cultivar than a spring cultivar. Northern blot analysis showed that the expression of wlt10 encoding a novel wheat member of a cereal-specific LT-COR protein family was specifically induced by low temperature. A freezing-tolerant winter cultivar accumulated the mRNA more rapidly and for a longer period than a susceptible spring cultivar. The increase in the amount of mRNA was temporary but the peak occurred at the time when the maximum level of freezing tolerance was attained. The mRNA accumulated more in the leaves than in the roots, and different light/dark regimes modulated the level of mRNA accumulation. Genomic Southern blot analyses using the nulli-tetrasomic series showed that the wlt10 homologues were located on the homologous group 2 chromosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app