JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biventricular systolic function in young lambs subject to chronic systemic right ventricular pressure overload.

In various clinical situations of congenital heart disease, the right ventricle (RV) is subject to a chronic systemic pressure overload which affects biventricular function and may progress to the development of RV failure. Young lambs (2-3 wk old) underwent adjustable pulmonary artery banding (PAB) at systemic (aortic) level for 8 wk. Biventricular function was determined by using load-independent indexes of global ventricular contractile performance by the end-systolic pressure-volume relationship (ESPVR) using the conductance catheter at baseline and during dobutamine infusion. PAB resulted in a significant fivefold increase in RV end-systolic pressure (12-64 mmHg) and a doubling of the RV-to-left ventricular (LV) wall thickness ratio (P < 0.01). RV global contractile performance increased significantly, as indicated by an increased slope of the ESPVR. Compared with age-matched control lambs, cardiac output decreased from 2.6 to 1.6 l/min (P < 0.05) whereas heart rates were equal. In contrast with RV volume, LV volume decreased significantly after PAB (P < 0.01), whereas the LV-ESPVR slope was unchanged. In the PAB group, the RV, but not the LV, showed a reduced response to dobutamine. We concluded that chronic RV pressure overload for 8 wk results in diminished pump function despite compensatory increased RV global contractile performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app