Add like
Add dislike
Add to saved papers

Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats.

Thiazolidinediones (TZDs), a class of antidiabetic agents, are specific agonists of peroxisome proliferator activator receptor (PPARgamma). However, their mechanisms of action, and the in vivo target tissues that mediate insulin sensitization are not well understood. The aim of this study was to investigate the role of glucose transporters (GLUT-1 and GLUT-4) in the TZD insulin-sensitizer action. The effects of rosiglitazone treatment were studied using Zucker (fa/fa) rats after 7 days of oral dosing (3.6 mg/kg/d). Rosiglitazone lowered (approximate 80%) basal plasma insulin levels in obese rats and substantially corrected (approximately 50%) insulin resistance based upon results from hyperinsulinemic euglycemic clamp studies. GLUT-4 protein levels were reduced (approximately 75%) in adipose tissue of obese rats and treatment with rosiglitazone normalized them. Interestingly, GLUT-1 protein content was increased in adipose tissue ( thick approximate 150%) and skeletal muscle (approximately 50%) of obese rats and treatment with rosiglitazone increased it even more by 5.5-fold in fat and by 2.5-fold in muscle. Consistent with these results, basal (GLUT-1-mediated) transport rate of 3-O-methyl-D-glucose into isolated epitrochlearis muscle was elevated in response to rosiglitazone. Incubation of fully differentiated 3T3-L1 adipocytes with the drug for 7 days increased the levels of GLUT-1 protein, but did not affect GLUT-4 levels. In conclusion, rosiglitazone may improve insulin resistance in vivo by normalizing GLUT-4 protein content in adipose tissue and increasing GLUT-1 in skeletal muscle and fat. While the drug has a direct effect on GLUT-1 protein expression in vitro without a direct effect on GLUT-4 suggests that direct and indirect effects of rosiglitazone on glucose transporters may have an important role in improving insulin resistance in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app